Symposium 15

Tradition and Innovation in Mathematics in Late Antiquity and the Middle Ages

Organizers:
Jean Christianidis | Department of History and Philosophy of Science, National and Kapodistrian University of Athens
Ahmed Djebbar | Membre fondateur de l’Académie Algérienne des Sciences et Technologies, Professeur Emérite, Université de Lille 1

Program

Chairs: Jean Christianidis & Ahmed Djebbar

Saturday, September 14, 2019

Morning Session | 09:00-11:00
Venue: Marasleio Room 5

Ahmed Djebbar | Les mathématiques grecques en Occident musulman: L’exemple des Eléments d’Euclide et de l’Introduction arithmétique de Nicomaque

Michalis Sialaros and Jean Christianidis | Rhetoric of Mathematics: The Case of Diophantus of Alexandria

Dora Touliatou | Indeterminate analysis in the “heronian”corpus? A new reading of problems 24.1-13 of Heron’s Geometrica

Ioanna Skoura | Computus ecclesiasticus in Byzantium

Noon Session | 11:30-13:30
Venue: Marasleio Room 5

Abdelmalek Bouzari | La géométrie des Coniques en Occident musulman

Athanasia Megremi | Problem solving tradition and Diophantine legacy in Greek Arithmetic: testimonies from the Anthologia Palatina

Ezzaim Laabid | Les procédés mathématiques utilisés dans la résolution des problèmes des héritages en occident musulman (XIe-XVe s) : entre tradition et innovation

Alain Bernard | Theon’s commentary on the Almagest, as series of problems

About the Symposium

Late Antiquity and the Middle Ages are two historical periods which have recently attracted much scholarly attention. This statement—the truth of which is evident for the case of Medieval Mathematics, and especially for the Arabic Mathematics—is valid also for the case of Late Antique Greek Mathematics. Being placed between Classical Antiquity and Modernity, this long period experienced the development of a multicultural and multilingual mathematical tradition, in terms of both content and form. Within this framework, aspects of tradition and innovation coexist. The principal aim of this colloquium is to further explore aspects of the mathematical production of this period by examining sources, interpretations, translations, mathematical methods, etc.